Srubdoma60.ru

Сруб Дома
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Прочность бетона на сжатие

Основополагающей характеристикой бетона является его показатель прочности, который выражается в виде класса и марки.

Для выполнения необходимых задач в строительстве пользуются соответствующими классами. Так, для гидросооружений нужен один класс, а при бетонировании фундамента под одноэтажный дом – другой.

Марка бетона «М» выражает усреднённые значения прочности, единицы измерения – кгс/см 2 , класс бетона обозначается литерой «В» и выражается в МПа. Разница между этими двумя понятиями выражается не только в виде буквы и единицы измерения.

Главное отличие заключается в том, что марка указывает на среднюю величину предела прочности, а класс – на точные значения, расхождение составляет меньше 5%. Для сложных расчётов используют класс бетона, т. к. с применением марки возникает риск ошибки, при котором настоящие показатели окажутся меньше расчётных. Например, в характеристиках указывается М100 и В7,5. Расшифровывается это так: точное усилие, необходимое для разрушения, составит 7,5 МПа, а обобщенная нагрузка равна 100 кгс/см 2 , т. е. фактически эта цифра может быть и 105, и 103,6, и 93, и 97,2 и пр.

Класс и марка бетона по прочности на сжатие по ГОСТ

Таблица 1 – Сравнительная характеристика бетонов разных классов и марок

Масштабный коэффициент α бетона

Документы, которые применяются при определении прочности

Требуемая прочность жёстко регулируется. Есть в наличии несколько основных документов для вычисления этой характеристики:

  • ГОСТ 10180-2012 – применяется для образцов из готовой бетонной смеси;
  • ГОСТ 28570-2019 – рассчитан для бетонных образцов;
  • ГОСТ 22690-2015 – для крупных сооружений без создания проб-образцов.

Прочностные испытания на сопротивление разрыву проводятся на специальных испытательных стендах. В них неподвижно закрепляется один конец испытываемого образца, а к другому присоединяют крепление привода, электромеханического или гидравлического. Этот привод создает плавно увеличивающее усилие, действующее на разрыв образца, или же на его изгиб или скручивание.

Испытание на разрыв

Испытание на разрыв

Электронная система контроля фиксирует усилие растяжения и относительное удлинение, и другие виды деформации образца.

Предел прочности материала при растяжении — это интенсивное свойство ; поэтому его значение не зависит от размера испытуемого образца. Однако, в зависимости от материала, это может зависеть от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов, а также температура окружающей среды и материала для испытаний.

Читайте так же:
Как облицевать эркер кирпичом

Некоторые материалы ломаются очень резко без пластической деформации , что называется хрупким разрушением. Другие, которые являются более пластичным, включая большинство металлов, испытывают некоторую пластическую деформацию и , возможно , сужения до того перелома.

Прочность на растяжение определяется как напряжение, которое измеряется как сила на единицу площади. Для некоторых неоднородных материалов (или для собранных компонентов) это может быть выражено как сила или как сила на единицу ширины. В Международной системе единиц (СИ) единицей измерения является паскаль (Па) (или кратное ему, часто мегапаскали (МПа), с использованием префикса СИ мега ); или, что эквивалентно паскалям, ньютонам на квадратный метр (Н / м 2 ). Обычная единица измерения в Соединенных Штатах — фунты на квадратный дюйм (фунт / дюйм 2 или фунт / кв. Дюйм). Килофунды на квадратный дюйм (ksi, или иногда kpsi) равны 1000 psi и обычно используются в Соединенных Штатах при измерении прочности на разрыв.

Пластичные материалы

  • 1: Абсолютная сила
  • 2: Предел текучести (предел текучести)
  • 3: Разрыв
  • 4: Область деформационного упрочнения
  • 5: область шеи
  • A: Видимое напряжение ( F / A )
  • B: Фактическое напряжение ( F / A )

Многие материалы могут демонстрировать линейное упругое поведение , определяемое линейной зависимостью напряжения от деформации , как показано на рисунке 1 до точки 3. Упругое поведение материалов часто распространяется в нелинейную область, представленную на рисунке 1 точкой 2 ( «предел текучести»), до которого деформации полностью восстанавливаются при снятии нагрузки; то есть образец, нагруженный упруго при растяжении , удлиняется, но при разгрузке возвращается к своей первоначальной форме и размеру. За пределами этой упругой области для пластичных материалов, таких как сталь, деформации пластичны . Пластически деформированный образец не возвращается полностью к своим первоначальным размерам и форме при разгрузке. Для многих приложений пластическая деформация недопустима и используется в качестве конструктивного ограничения.

После предела текучести пластичные металлы проходят период деформационного упрочнения, при котором напряжение снова увеличивается с увеличением деформации, и они начинают сужаться , поскольку площадь поперечного сечения образца уменьшается из-за пластического течения. В достаточно пластичном материале, когда образование шейки становится значительным, это вызывает изменение инженерной кривой напряжения-деформации (кривая A, рисунок 2); это связано с тем, что инженерное напряжение рассчитывается исходя из исходной площади поперечного сечения до образования шейки. Точка разворота — это максимальное напряжение на инженерной кривой напряжение-деформация, а координата инженерного напряжения этой точки — это предел прочности на растяжение, определяемый точкой 1.

Читайте так же:
Ламинированная дсп под кирпич

Предел прочности на растяжение не используется при проектировании пластичных статических элементов, поскольку методы проектирования диктуют использование предела текучести . Однако он используется для контроля качества из-за простоты тестирования. Он также используется для приблизительного определения типов материалов для неизвестных образцов.

Предел прочности на растяжение является обычным инженерным параметром при проектировании элементов из хрупкого материала, поскольку такие материалы не имеют предела текучести .

Предел прочности металла

Предел прочности меди

. При комнатной температуре предел прочности отожжённой технической меди σВ=23 кгс/мм 2 [8]. С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.

Предел прочности алюминия

. Отожжённый алюминий технической чистоты при комнатной температуре имеет предел прочности σВ=8 кгс/мм 2 [8]. С повышением чистоты прочность алюминия уменьшается, а пластичность увеличивается. Например, литой в землю алюминий чистотой 99,996% имеет предел прочности 5 кгс/мм 2 . Предел прочности алюминия уменьшается естественным образом при повышении температуры испытания. При понижении температуры от +27 до -269°C временное сопротивление алюминия повышается – в 4 раза у технического алюминия и в 7 раз у высокочистого алюминия. Легирование повышает прочность алюминия.

Методы определения прочности материала конструкции

Проведение статических испытаний на прочность – это тестирование шаблонных образцов определенной формы. По результатам экспериментов специалисты рисуют диаграмму, на которой можно наглядно увидеть, как деформируется материал под напряжением. Графические данные помогают оценить предел упругости и текучести, временное сопротивление. Для определения параметров определенного материала проводят специальные расчеты для вычисления усталостной нагрузки и предельного напряжения.

Методы определения прочности материала зависят его разновидности и типа строительной конструкции. Например, стандартный способ оценки характеристик кирпича – испытание на сжатие двух целых кирпичей, которые сложены друг на друга. Для исследования силикатного кирпича используют ультразвуковую методику.

Читайте так же:
Кирпич технология производства схема

Все способы исследования можно разделить на две большие группы – разрушающего и неразрушающего контроля. Они применимы к отдельным строительным конструкциям, образцам и отдельным элементам.

Определение прочности материала

При возможности специалисты стараются отдавать предпочтение методам неразрушающего контроля, которые не требуют демонтажа и разбора конструкции. Несмотря на то, что образцы проб отбирают из наименее важных функциональных элементов, стандартные методы испытания прочности отражаются на устойчивости и надежности здания. Но не всегда и не у всех строительных изделий возможно оценить прочность методами неразрушающего контроля.

Методы разрушающего контроля

Отличительная особенность данного типа исследования – проведение испытаний на контрольных образцах до их полного разрушения. Например, кирпич могут сжимать или воздействовать извне иным способом до тех пор, пока он не даст трещину или не посыплется. Для этого из конструкции извлекают часть материала и отправляют в лабораторию для оценки прочностных характеристик.

Для определения участка отбора проб учитывают доступность образца, степень нагруженности, и поврежденности, интенсивность эксплуатации строительной конструкции.Методы разрушающего контроля позволяют с минимальной погрешностью вычислить физические свойства образца. Но они требуют серьезных трудозатрат. Главный недостаток исследования методом разрушающего контроля – необходимость нарушать целостность здания. Это не всегда возможно, поэтому специалисты стараются оценивать характеристики строительных материалов методом неразрушающего контроля.

Методы неразрушающего контроля

Исследование неразрушающими методами активно используется при технической экспертизе жилых, промышленных, административных зданий и построек, объектов исторического и культурного наследия. Они могут быть основаны на различных технологиях:

  • механической: метод упругого отскока, исследование пластических деформаций и ударный импульс часто используют для экспертизы бетона;
  • радиационной: методы базируются на применении радиоизотопов и нейтронов;
  • магнитной: методы магнитопорошковой и индукционной оценки;
  • акустической: исследование путем воздействия ультразвука, оценка эффектов акустоэмиссии;
  • радиоволновой: исследование распределения в материале волн разной длины;
  • электрической: определение характеристик через вычисление электросопротивления, электроиндуктивности и электроемкости строительного материала.
Читайте так же:
Кладочный кирпич для печи

ДЕПАРТАМЕНТ

С помощью современных приборов и технологии можно определить прочностные характеристики изделия без конструктивных изменений и сохранить первоначальные физико-механические параметры материалы.

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ.

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.

Группы марок щебня:

  1. М1400-М1200 — высокопрочные;
  2. М1200-М800 — прочные;
  3. М800-М600 — средней прочности;
  4. М600-М300 — низкой прочности;
  5. М200 — очень низкой прочности.

Для материала, отправляемого на изготовление асфальтобетона, главной характеристикой прочности является марка на истирание. ГОСТ устанавливает четыре марки — от И1 до И4.

Самый прочный — марки И1. Испытания на истирание проводят в специальном полочном барабане, в который загружают щебень и 12 чугунных шаров массой по 400 г. Барабан вращают со скоростью 30 об/мин. Принадлежность к конкретной марке истираемости определяют по величине потери щебнем части массы. Нормативная потеря массы после испытаний может составлять для щебня марки И1 до 25 %, для марки И4 — до 60 %.

Читайте так же:
Матрицы для лего кирпича армопояс

Указанный выше норматив также ограничивает содержание в щебне слабых зёрен. К ним относят включения исходной породы с пределом прочности до 20 МПа. Таких зёрен в прочных щебнях должно быть не более 5 %, в щебнях средней прочности — не более 10 %, низкой прочности — 15 %.

Морозостойкость щебня как характеристика прочности

Морозостойкость щебня

Понятия прочности щебня нельзя рассматривать в отрыве от характеристик его морозостойкости. Ведь прочный, но относительно уязвимый к низким температурам продукт может потерять свою прочность раньше, чем предполагает застройщик. Поэтому испытания на морозостойкость всегда сопутствуют испытаниям на прочность.

Для щебня установлены марки от F15 до F400. Продукты F15, F25 и F50 обладают низкой морозостойкостью, F100 и F150 — средней, F200, F300 и F400 — высокой морозостойкостью.

Цифры обозначают количество циклов замораживания, при которых ещё отсутствует потеря массы (разрушение щебня). На практике испытания на морозостойкость проводят как замораживанием с оттаиванием, так и насыщением продукта сернокислым натрием с последующим высушиванием. Второй метод удобнее, однако при несовпадении результатов испытания проводят только методом замораживания.

Лещадность

Лещадность

Это ещё одна характеристика щебня, неразрывно связанная с прочностью бетона и указывающая на наличие зёрен пластинчатой и игловатой форм. Высокая лещадность отрицательно сказывается на прочности бетона, поэтому наилучшим считается щебень I группы. Его называют кубовидным, содержание лещадных зёрен в нём — не более 10 %. Щебень V группы содержит до 50 % лещадных зёрен, его нельзя применять в фундаментах независимо от состава материала.

Как определить прочность щебня?

Точно установить принадлежность щебня к определённой марке прочности по внешнему виду не сможет даже специалист. А высокая ответственность за принятие решения требует лабораторных испытаний с составлением акта и заключения. Щебень — это основной конструкционный материал высокопрочного бетона и нагруженного асфальтобетона, выбирать его нужно весьма тщательно. В нашей компании вы всегда сможете выбрать гранитный щебень, а также гравийный щебень самых популярных марок.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector