Srubdoma60.ru

Сруб Дома
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент теплового расширения

Коэффициент линейного теплового расширения показывает относительное изменение длины тела при нагревании на температуру ΔT:

alpha_L = <Delta L over <L Delta T data-lazy-src=

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений: αx, αy, αz. Для изотропных тел и αV = 3αL;.

Например, вода, в зависимости от температуры, имеет коэффициент объёмного расширения

Для железа коэффициент линейного расширения равен 11,3×10 −6 K −1 [1] .

Для стали

Таблица коэффициента линейного расширения α,10 −6 /°C [2]

Марка стали20—100 °C20—200 °C20—300 °C20—400 °C20—500 °C20—600 °C20—700 °C20—800 °C20—900 °C20—1000 °C
08кп12,513,414,014,514,915,115,314,712,713,8
0812,513,414,014,514,915,115,314,712,713,8
10кп12,413,213,914,514,915,115,314,714,812,6
1011,612,613,014,6
15кп12,413,213,914,514,815,115,314,113,213,3
1512,413,213,914,414,815,115,314,113,213,3
20кп12,313,113,814,314,815,115,2
2011,112,112,713,413,914,514,8
2512,213,013,714,414,715,015,212,712,413,4
3012,112,913,614,214,715,015,2
3511,111,913,013,414,014,415,0
4012,412,614,513,313,914,615,3
4511,912,713,413,714,314,915,2
5011,212,012,913,313,713,914,513,4
5511,011,812,613,414,014,514,812,513,514,4
6011,111,913,514,6
15К12,012,813,613,814,0
20К12,012,813,613,814,2
2212,612,913,313,9
А1211,912,513,614,2
16ГС11,112,112,913,513,914,1
20Х11,311,612,513,213,7
30Х12,413,013,413,814,214,614,812,012,813,8
35Х11,312,012,913,714,214,6
38ХА11,012,012,212,913,5
40Х11,812,213,213,714,114,614,812,0
45Х12,813,013,7
50Х12,813,013,7
Читайте так же:
Дробилка для переработки кирпича

Что это такое?

Термин коэффициент расширения бетона обозначает, как сильно расширяется строительный материал при увеличении температуры.

Понятие связано с теплоемкостью и теплопроводностью раствора. Бетон, который может расширяться, имеет в составе добавки или напрягающий цемент. Таким образом, в результате получается стойкая смесь, которая способна изменяться в размере. Кроме этого, для создания конструкции необходимы швы, поддерживающие блоки. Если возникает слишком большой температурный перепад, то бетон может потрескаться. Для этого стараются правильно подобрать состав материала с высоким коэффициентом, поэтому можно предотвратить появление трещин.

Отрицательное тепловое расширение

Отрицательное тепловое расширение возникает в некоторых материалах, которые вместо увеличения их размера при высоких температурах сжимаются из-за низких температур.

Этот тип теплового расширения обычно наблюдается в открытых системах, где наблюдаются направленные взаимодействия — как в случае льда — или в сложных соединениях — как в случае некоторых цеолитов, Cu2O, среди других..

Кроме того, некоторые исследования показали, что отрицательное тепловое расширение также происходит в однокомпонентных решетках в компактной форме и с взаимодействием центральной силы..

Яркий пример отрицательного теплового расширения можно увидеть при добавлении льда в стакан воды. В этом случае высокая температура жидкости на льду не вызывает какого-либо увеличения размера, а скорее уменьшает размер того же самого.

Коэффициент теплового расширения описывает, как изменяется размер объекта, когда происходит повышение его температуры. В зависимости от конкретного использования, коэффициент расширения может быть линейный или объемный. Если тело твердое, требуется узнать изменение его длины или конкретной области, поэтому применяется коэффициент линейного расширения. Для жидкостей и газов используется только температурное расширение, коэффициент линейного теплового расширения для них не подходит, потому что приобретают форму емкости, в которой находятся.

Читайте так же:
Облицовка трубы дымохода кирпичом

Коэффициент расширения

Коэффициент объемного теплового расширения показывает, какое относительное изменение объема тела при постоянном давлении и изменении его температуры на 1 градус. Выражается формулой:

αV = (1/V)*(dV/dT)*ρ

Коэффициент линейного теплового расширения показывает относительное изменение длины тела, когда происходит его нагревание.

αL = ΔL/(L0*ΔT)

Коэффициент линейного теплового расширения может иметь разные значения, если направления измерений будут разными.

Теоретически рассчитать коэффициент линейного объема можно, зная коэффициент объемного расширения (α V ≈ 3 α L).

При нагревании некоторых материалов происходит их сжатие, а не расширение. У них коэффициент расширения (линейный) будет иметь отрицательное значение, к примеру, вода (коэффициент расширения с отрицательным значением при температуре 0-3,984 °С).

Вычисление коэффициента

Коэффициент теплового расширения полипропиленовых труб для отопления определяется используемым материалом. Существуют специальные формулы для проведения расчетов и недопущения неудобств во время монтажа системы.

Чтобы высчитать возможную деформацию труб в сантиметрах, нужно узнать коэффициент их расширения и длину. Рабочей температурой считают комнатную.

Сперва узнают разницу температур, затем ее умножают на длину трубы. Результат умножают на коэффициент расширения.

Приблизительный расчет

Если после проведения расчетов коэффициент равняется 20 мм, то это значит, что в процессе функционирования отопительной системы расширение полипропиленовых труб армированных стекловолокном достигнет 2 см. То есть при прокладке магистрали эти показатели в любом случае потребуется учесть.

Избавиться от лишних сантиметров можно так:

  • осуществить монтаж под прямым углом;
  • можно добавить несколько петлеобразных деталей;
  • произвести укладку труб П-образным способом.

коэффициент теплового расширения полипропиленовых труб

Если вы сомневаетесь в правильности выбора материала, и в том, корректно ли произведены расчеты удлинения полипропиленовых труб при нагреве, можно доверить такую работу профессионалам.

удлинение полипропиленовых труб при нагреве

Полипропиленовые трубы с каждым днем становятся все популярнее. Они недорогие, их легко укладывать. Немаловажным фактором для создания качественной магистрали является бдительный выбор материала. Приобретаемый товар должен быть максимально качественным.

Читайте так же:
Клиновидный кирпич для камина

Не лишним будет перед покупкой посоветоваться со знакомым сантехником. Непосредственно при выборе труб осматривайте их на возможные повреждения и трещины. И не забывайте о типе выбираемых изделий.

1.5. Температурные перемещения

Вернемся к бруску материала, показанного на рисунке 1 [1]. Предполагаем, что материал бруска является гомогенным и изотропным, то есть механические свойства материала бруска являются одинаковыми во всем его объеме. Кроме того, предполагаем, что изменение температуры ΔT является однородным, то есть одинаковым, по всему бруску. При таких условиях мы можем вычислить увеличение любого размера бруска путем умножения первоначального размера на температурную деформацию. Например, если один из размеров бруска составляет L, то этот размер увеличиться на величину

Уравнение (4) можно применять для вычисления изменений длин элементов конструкций после однородного нагрева, например, удлинение призматического стержня на рисунке 2.2. Поперечные размеры стержня также изменятся, но эти изменения не показаны на рисунке 2.2, так как обычно они не оказывают влияния на осевые силы, которые передаются этим стержнем.

Рисунок 2.2 – Увеличение длины призматического стрежня
в результате однородного увеличения температуры (уравнение (4)) [1]

Оценим удлинение незакрепленных алюминиевого и стального стержней длиной 3 м при увеличении их температуры на 50 ºС.

Для алюминиевого стержня:

Для стержня из малоуглеродистой стали:

При рассмотрении выше температурных деформаций предполагалось, что конструкция не имеет ограничений для своих перемещений, что позволяло ей расширяться или сокращаться совершенно свободно. Такие условия возникают, например, когда объект лежит на гладкой поверхности, на которой не возникает трения [1]. В таких случаях при однородном нагреве всего объекта в целом не возникает напряжений, хотя неоднородные изменения температуры могут вызывать внутренние температурные напряжения. Однако многие конструкции имеют опоры, которые препятствуют свободному расширению и сокращению их размеров. Поэтому в них развиваются температурные напряжения даже, если изменение температуры является однородным по всей конструкции.

Читайте так же:
Голицынский кирпич цвет солома

Армирование алюминием и стекловолокном

Это делают цельной или перфорированной фольгой, толщиною в 0,01 – 0,005 см. Ее размещают на внешней или внутренней грани между прослойками полипропилена. Соединяют слои специальным клеем.

фото: Трубы армированные алюминием

Сплошная прослойка фольги не позволяет проникать кислороду к носителю тепла. Большое количество кислорода ведет к коррозийным образованиям на приборах отопления.

Линейное расширение данных труб равняется 0,03мм/мК, приблизительно 0,3 см на один метр.

ПП трубы, армированные стекловолокном — это трехслойный композит. В нем среднюю прослойку стекловолокна сваривают с частицами полипропилена из соседних прослоек.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector